A Scalable Generative Graph Model with Community Structure

نویسندگان

  • Tamara G. Kolda
  • Ali Pinar
  • Todd Plantenga
  • Seshadhri Comandur
چکیده

Network data is ubiquitous and growing, yet we lack realistic generative network models that can be calibrated to match real-world data. The recently proposed Block Two-Level Erdős-Rényi (BTER) model can be tuned to capture two fundamental properties: degree distribution and clustering coefficients. The latter is particularly important for reproducing graphs with community structure, such as social networks. In this paper, we compare BTER to other scalable models and show that it gives a better fit to real data. We provide a scalable implementation that requires only O(dmax) storage where dmax is the maximum number of neighbors for a single node. The generator is trivially parallelizable, and we show results for a Hadoop MapReduce implementation for a modeling a real-world web graph with over 4.6 billion edges. We propose that the BTER model can be used as a graph generator for benchmarking purposes and provide idealized degree distributions and clustering coefficient profiles that can be tuned for user specifications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Overlapping Communities in Social Networks using Deep Learning

In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...

متن کامل

Agwan: A Generative Model for Labelled, Weighted Graphs

Real-world graphs or networks tend to exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Much effort has been directed into creating realistic and tractable models for unlabelled graphs, which has yielded insights into graph structure and evolution. Recently, attention has moved to creating models for labelled graphs: many real...

متن کامل

Voice-based Age and Gender Recognition using Training Generative Sparse Model

Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...

متن کامل

Overlapping Community Detection in Temporal Text Networks

Network is a powerful language to represent relational data. One way to understand network is to analyze groups of nodes which share same properties or functions. The task of discovering such groups is known as community detection. Generally, two types of information can be utilized to fulfill this task, i.e., the link structures and the node attributes. The temporal text network is a special k...

متن کامل

Leaders, Followers, and Community Detection

Communities in social networks or graphs are sets of well-connected, overlapping vertices. The effectiveness of a community detection algorithm is determined by accuracy in finding the ground-truth communities and ability to scale with the size of the data. In this work, we provide three contributions. First, we show that a popular measure of accuracy known as the F1 score, which is between 0 a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2014